Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness

نویسندگان

  • Y. Liu
  • J. D. Richardson
  • J. G. Luhmann
  • R. P. Lin
  • S. D. Bale
چکیده

[1] We examine the upstream meridional deflection flows of interplanetary coronal mass ejections (ICMEs) in an effort to investigate their cross-sectional shape and the magnetic field orientation in their sheath regions. Eight out of 11 magnetic clouds (MCs) near solar minimum identified for the curvature study are concave outward as indicated by the elevation angle of the MC normal with respect to the solar equatorial plane; an inverse correlation is observed between the meridional deflection flow and the spacecraft latitude for these concave-outward MCs, which suggests that the upstream plasma is deflected toward the equatorial plane. MHD simulations, however, show that the meridional deflection flow moves poleward for a concave-outward CME. The poleward flow deflection is observed only ahead of convex-outward MCs. Possibilities leading to this discrepancy are discussed. The deflection flow speed in sheath regions of ICMEs increases with the ICME speed relative to the ambient solar wind, which together with the coupling between the meridional magnetic field and deflection flow yields a positive linear correlation between the sheath meridional field and the ICME relative speed. This empirical relationship could predict the sheath meridional field based on the observed CME speed, which may be useful for space weather forecasting as ICME sheaths are often geoeffective. Implications of the deflection flows and ICME curvature are also discussed in terms of magnetic reconnection and particle acceleration in ICME sheaths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nondestructive Evaluation of Damage in Beams Using Displacement Curvature

In this paper, the capabilities of displacement curvature derived from static response data for finding the location and severity of damage in Euler-Bernoulli beams are assessed. Static response of a beam is obtained using the finite element modeling. In order to reduce the number of measured nodal displacements, the beam deflection is fitted through a polynomial function using a limited number...

متن کامل

Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision

The numerical studies of the interplanetary coupling between multiple magnetic clouds (MCs) are continued by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. The interplanetary direct collision (DC) / oblique collision (OC) between both MCs results from their same/different initial propagation orientations. Here the OC is explored in contrast to the ...

متن کامل

Bending Analysis of Carbon Nanotubes with Small Initial Curvature Embedded on an Elastic Medium Based on Nonlocal Elasticity and Galerkin Method

Carbon nanotubes have an important role in reinforcing nanocomposits. Many experimental observations have shown that in the most nanostructures such as nanocomposites, carbon nanotubes (CNTs) are often characterized by a certain degree of waviness along their axial direction. In the present paper, the effects of initial curvature, influence of surrounding medium that is modeled as Winkler elast...

متن کامل

A crack localization method for beams via an efficient static data based indicator

In this paper, a crack localization method for Euler-Bernoulli beams via an efficient static data based indicator is proposed. The crack in beams is simulated here using a triangular variation in the stiffness. Static responses of a beam are obtained by the finite element modeling. In order to reduce the computational cost of damage detection method, the beam deflection is fitted through a poly...

متن کامل

Magnetohydrodynamic Simulation of the Interaction between Interplanetary Strong Shock and Magnetic Cloud and its Consequent Geoeffectiveness 2: Oblique Collision

Numerical studies of the interplanetary “shock overtaking magnetic cloud (MC)” event are continued by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Interplanetary direct collision (DC)/oblique collision (OC) between an MC and a shock results from their same/different initial propagation orientations. For radially erupted MC and shock in solar corona, the or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008